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Expressions are obtained for the complex potentials characterizing the stress-strain state of an elastic plane with an elliptic hole 
subjected to a moment at an arbitrary point of the plane. The shear stresses at the edge of the hole are calculated. The stress 
intensity factors for the limiting case of a straight slit (a crack) are determined. © 1999 Elsevier Science Ltd. All rights reserved. 

Expressions have been obtained for the stress intensity factors due to the action of a concentrated moment  at an 
arbitrary point of a plane by considering the effect of a concentrated force on the crack contour [1]. The expression 
obtained by replacing the complex conjugate coordinate of the point of application of the moment  in this result 
by the value of the mapping function for the crack and multiplying the expressions for the stress intensity factors 
by n -t:2 (the stress components  were given by other formulae in [1]) is derived in a different way here and is given 
at the end of the paper. 

The complex potentials characterizing the stress-strain state of an infinite plane weakened by an elliptical hole 
due to the effect of a moment  M applied at an arbitrary point Z 0 of the plane outside the hole can be represented 
in the following form [2] 

iM 1 
tP l (Z)= tPl°(Z)' ~ t ( Z ) =  2 n  Z--"'~0 ÷ v ~ ( Z )  (1) 

where the functions tpl(z) and ~ [ (Z)  are holomorphic outside the hole. 
To solve the problem we map the exterior of the ellipse into the interior of the unit  circle 

R ( ~  ~ )  a + b  a - b  
Z = ( O ( ~ ) =  + , R =  2 , m a + b  (2) 

(a and b are the semi-axes of the ellipse). Substituting expression (2) into relations (1), we obtain 

~P(~)= tP0(~), V(~)  = iM A o k V o ( ~ )  (3) 
2~ ~- go 

AO = co,(~o) - , ~ = re'°, ~o = roe'°° 

_ at a2 - . (+  ~ -  +... ~0(~)-~+~-+ .... v0(~)= b0 + b~ b2 

The conditions on the contour have the form 

c0(o) _, J _ I 

c0'(~) 

~(c~) 1 c 2 + m 
G = e iO, ~ ' (1  / if) = ff 1 - mG 2 ' 

~ ( l / f f )  f f l + m f f  2 )  

= o2_m) 

(4) 
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Substituting the corresponding values of the complex potentials  (3) into (4), and integrating over the unit circle 
y we obtain 

I l i  ° + / f 2  ° = d{5 (5) 
ZTCt T {5 - -  

W o ( ~ ) = _  l / f l o _ / f o  . l + m ~ 2  , .. 
2 ~ i ' t  ~ _ - ~  d{5 - q -~--_---~- g~o ({) 

f l 0 + / f o = i M  :-'400 iM A 0 
l -  : o  _ ¢ o  = { 5 -  

Evaluating the integrals and substituting the results into (3), we finally obtain 

t p ( ~ ) = i M A o l ~ o  V ( ~ ) = i M {  ao l + m ~  2 A'o~ } 

2"-~ 1 - ~ o ~ '  ~-~ '~ - ~o ~2 _ m (1 - ~o~) 2" (6) 

For  a circular hole (rn = 0) we have A0 = -40 = 1/Ro, where R0 is its radius. The case rn = 1 corresponds to the 
complex potent ials  for a straight slit. 

For  the shear  stress on the contour  of  an elliptical hole the formula due to Kolosov and Muskhelishvili  yields 

2 M  f 2 . 2  {5~ = ~ ' t r 6  tr0 - m cos  20 o ] {r o [ r  o sin 2(0 - 00)  - 2 s in(0 - 0 o)] + (7) 

+ m[sin 20 - 2 r  0 sin(0 + 00)  + ro 2 sin 200 ] } - mro 2 sin 200 x 

x {l - 2 r  o cos (e  - 0 o) + ro 2 cos  2(0 - 0 o) - re[cos 20 - 2 r  o cos (e  + 0 o) + ro 2 cos  200] 1} 

A = p4 (r 4 _ 2mro 2 cos 200 + m 2)(1 - 2m cos 20 + m 2) 

p2 = I - 2 r  0 cos (0  - 00) + ro 2 

For  a circular hole 

{5[ = 2 M ( n P ~ ) - '  r 0 [ r  0 sin 2(0 - 0 o) - 2 sin(0 - 00)] / p4 (8) 

When m --- 1, expression (7) corresponds to the value ~0 for the contour  of a straight slit (a crack). In this case 
the stress intensity factors are Kl, Kn in the immedia te  vicinity of the crack tip [3]. 

It is shown in [4, 5], which deal with the mathemat ica l  theory of brit t le fracture, that  in a large number  of cases 
of  practical impor tance  fracture is quasi-britt le,  in that  while there is a plastic region, it is small in size and 
concentrated in the immediate  vicinity of  the crack surfaces: This important  idea suggests the possibility of applying 
the theory of  bri t t le fracture to practical problems.  

In this case the stress intensity factors are given in the form 

I • 

K, - iK u = 2 ~  l im [(Z - a )  ~ ~ (Z)] 
Z---~ a 

In the mapped  plane 

we obtain 

= 2 o,(1) = iM "Ao 
Ki - i g l l  2 '  

2~o 
A-0 = a(~2 _ 1) (9) 

In the case where the moment  is applied on the contour in the middle of the upper side of the crack, corresponding 
to 0o = rd2, ~ = e i~2 = i, we will have 
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